PoTrojan: powerful neural-level trojan designs in deep learning models
نویسندگان
چکیده
With the popularity of deep learning (DL), artificial intelligence (AI) has been applied in many areas of human life. Artificial neural network or neural network (NN), the main technique behind DL, has been extensively studied to facilitate computer vision and natural language processing. However, the more we rely on information technology, the more vulnerable we are. That is, malicious NNs could bring huge threat in the so-called coming AI era. In this paper, for the first time in the literature, we propose a novel approach to design and insert powerful neural-level trojans or PoTrojan in pre-trained NN models. Most of the time, PoTrojans remain inactive, not affecting the normal functions of their host NN models. PoTrojans could only be triggered in very rare conditions. Once activated, however, the PoTrojans could cause the host NN models to malfunction, either falsely predicting or classifying, which is a significant threat to human society of the AI era. We would explain the principles of PoTrojans and the easiness of designing and inserting them in pre-trained deep learning models. PoTrojans doesn’t modify the existing architecture or parameters of the pre-trained models, without re-training. Hence, the proposed method is very efficient.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملTrojaning Attack on Neural Networks
With the fast spread of machine learning techniques, sharing and adopting public machine learning models become very popular. This gives attackers many new opportunities. In this paper, we propose a trojaning attack on neuron networks. As the models are not intuitive for human to understand, the attack features stealthiness. Deploying trojaned models can cause various severe consequences includ...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.03043 شماره
صفحات -
تاریخ انتشار 2018